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Numerical algorithms for surface tension and viscosity are presented 1n the context of a
Lagrangian treatment of incompressible hydrodynamics with a dynamically restructuring grid.
New algorithms are given which update previous Lagrangian approaches in the code SPLISH.
Test problems nvolving internal gravity and capillary waves, an oscillating droplet and a
viscous shear layer are described. An example 1s given of a flow calculated in and around a
viscous droplet with surface tension in a shear flow. ' 1988 Academic Press Inc

I. INTRODUCTION

In principle, a Lagrangian formuiation of the hydrodynamics equations is
particularly attractive for numerical calculations. Each discretized fluid element is
tracked as it evolves through the interaction with its changing environment and
with external forces. The local interactions can be represented without nonphysical
numerical diffusion. Conservation laws are simple to express since there are no
fluxes out of the fluid element boundaries. The paths of the fluid elements are them-
selves a flow visualization. It thus appears to be the natural approach to transient
hydrodynamics with free surfaces, interfaces, or sharp boundaries.

In practice, the use of Lagrangian methods in numerical simulations has
generally been restricted to “well-behaved” flows. Shear, fluid separation, or even
larger amplitude motion produce severe grid distortion. These distortions arise
because grid points can move far enough that their near-neighbors change in the
course of a calculation. When differential operators are approximated over a mesh
which is distorting, the approximations may become inaccurate. Attempting to
regain accuracy through regridding and interpolating physical quantities onto the
new grid introduces numerical diffusion into the calculation.

This paper is a summary and update of the latest additions and modifications to
a numerical technique for indefinitely extending Lagrangian calculations by using a
restructuring triangular mesh, first introduced by Fritts and Boris [1]. The major
advance of this approach is that the grid automatically adapts and refines itself to
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maintain accuracy for discretized operators in a manner that is nondiffusive. The
algorithms have been implemented in the code SPLISH, which has been applied to
calculations of nonlinear waves {2, 3], flows over obstacles [4], Kelvin—-Helmholtz
instabilities [5], Rayleigh-Taylor instabilities [6], Couette flows, and Taylor
vortex flows [7].

Work on Lagrangian techniques for grids which do not have fixed connectivity
has recently had a renaissance. Early attempts included the PANACEA code [8]
and the PAF (particle-and-force) algorithm [9, 10]. In the 1970s, these concepts
were improved and extended for triangular grids: triangle reconnection by Crowley
[11]; MHD algorithms over a triangular mesh [12]; and adaptive triangular
meshes in the work mentioned in the previous paragraph on SPLISH. During the
same period work began which used Voronoi meshes for hydrodynamics
calculations [13].

Recently this use of general connectivity grids has rapidly expanded, as sum-
marized in the First International Conference on Free-Lagrange Methods [14].
Applications now include finite-difference and finite-element calculations of classic
hydrodynamic instabilities, tokamak modelling, high temperature plasma physics,
heat conduction, wave-structure interactions, impact deformations and
hydrodynamics problems for both compressible and incompressible fluids. Free-
Lagrange methods now use quadrilateral, triangular, and mixed meshes in two
dimensions, tetrahedral meshes in three dimensions, Voronoi meshes in both two
and three dimensions, and methods which are mesh-free.

In this paper we present the latest modifications to SPLISH (Section II). These
include the most recent version of the rotation operator, which conserves cir-
culation, and the residual algorithm, which ensures conservation of the area of cells.
We also introduce new algorithms for viscosity and surface tension. Including
viscosity proved to be straightforward (Section II). However, the search for an
algorithm good enough for surface tension (Section 111} was more challenging and
difficult. The basic problem is defining a proper curvature from a finite number of
points. Because of this, the numerical approximation of surface tension forces
between two fluids is conceptually quite different from approximations of convec-
tion and viscous forces. The final formulation chosen, a series of test problems, and
a list of approaches that failed are detailed (Section III). Finally, we combine the
convective transport, surface tension, and visocsity algorithms to perform some
preliminary calculations of flows in and around a viscous kerosene droplet. These
calculations show vortex shedding behind the droplet, distortion of the droplet due
to the shear flow, and internal droplet flows.

II. Basic ELEMENTS OF LAGRANGIAN TRIANGULAR GRIDS

This section is a review of the derivation of low order finite-difference
approximations to the equations describing incompressible fluid motion for general
triangular grids. Some of the material was originally presented by Fritts and Boris
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[1], and the interested reader is referred there for more detail. However, new
material brings the previous paper up-to-date. This includes the lastest version of
the rotation operator, which conserves circulation, the residual algorithm, which
ensures conservation of the area of cells, and the new algorithm for viscosity.

A. The Triangular Grid

Consider a two-dimensional space which is divided into triangular cells. A section
of this mesh shown in Fig. 1, which shows an interface between fluid type I and
fluid type IL In Fig. la, a particular triangle j is highlighted by heavy lines and the
various components of the triangle are labeled. Three vertices, V', V,, and V;, are
connected consecutively by sides S, S,, and S;. The direction of labeling around
each triangle is counterclockwise and the - axis is directed out of the page. Since the
mesh can be irregularly connected, an arbitrary number of triangles can meet at
each vertex.

We can define a cell surrounding a vertex, as shown in Fig. 1b, by the shaded
region surrounding V. The borders of such vertex-centered cells are determined by
constructing line sigments joining the centroid of each triangle with the midpoints
of the two triangle sides connected to the vertex, for all triangles surrounding that
vertex. This definition of a vertex cell equally apportions the area of a triangle to
each of its three vertices and provides a simple, efficient way to evaluate the finite
difference operators. However, the definition of a vertex cell is arbitrary. Other

FiG 1 A section of a triangular grid showing (a) a material interface, (b) a vertex cell.
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definitions could be equally weli employed, although they generally require
additional calculations to determine cell intersection points. The integration of cell
quantities may therefore involve more arithmetic operations for other definitions.

B. Finite Differences on a Triangular Grid

Finite-difference approximations for derivatives of functions defined on the
triangular grid are derived from the expressions for the integral of the gradient of a
scalar function, f, and the divergence and curl of a vector field, v, in two Cartesion
dimensions.

j4VfdA=§Cfd1xf (2.1)
Lv.vdA=§§Cv.(d1xf) (2.2)
j4vxvdA=§Cv.dlf. (2.3)

In each of these expressions, 4 is the region enclosed by the curve C and dl is the
vector arc length around C in the counterclockwise direction. The variable Z is a
unit vector in the direction of the ignorable coordinate. By using these definitions in
a conservative integral approach, the definitions for spatial derivatives described
below can be naturally extended to two-dimensional axisymmetric geometry [7].

Throughout the following discussion a triangle-centered quantity is assumed to
be piecewise constant over the triangles with discontinuities occurring at the
triangle sides and a vertex-centered quantity is assumed to be piecewise linear over
the triangles. If we want to form a triangle-centered derivative, we use the triangles
as the area A and the sides of the triangle for the curve C in Egs. (2.1)-(2.3). We
then approximate the area integral by the area of the triangle times the value of the
derivative on the triangle, and approximate the line integral using the trapezoidal
rule on each side of the triangle. For example, the gradient of a scalar function f
defined at the vertices is a triangle-centered quantity, (Vf),, given by

A;(V_f)j'__%Z.f:(rlfl_rz+l)va (24)

W)

where r, = (x,, ,) is a vector coordinate for vertex i and 4, is the area of triangle /.
We have also used the notation of Fritts and Boris [1] that 3, is interpreted as
the sum over vertices / of triangle j. In the material presented below, the index i
designates vertex-centered quantities and the index j designates triangle-centered
quantities.

If we want to form a vertex-centered derivative, we use the vertex-centered cell as
the area 4. We approximate the area integral on the left side of Egs. (2.1)-(2.3) by
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the area of the vertex-centered cell times of value of the derivative at the vertex. We
approximate the line integral using the value on each triangle and the appropriate
vector length through the triangle. For example, the curl of the vector field v at a
vertex ¢ is approximated by

A(Vxv) =LY v, 2 (r,,  —1)5 (2.5)

e

where 4, =134, is the vertex-centered cell area, }° ,, is a sum over the triangles
around the central vertex ¢, >, is a sum over the vertices around vertex ¢, and
v,., . is the value of the vector field v on the triangle having vertices ¢, i, i+ L.
Similarly, the divergence of the vector field v at a vertex is approximated by

AV V), =5 [V, x(r —1)] -2 (2.6)

i)
C. The Equations for Incompressible, Inviscid Flow

The basic equations for inviscid incompressible hydrodynamics are

dp
sty 2.7
d[ k ( )
V.v=0, (2.8)
dv
p—+Vp=A»,. (2.9)

dt

In two dimensions the fluid density p, pressure p, and velocity v are assumed to
vary with x, y, and 7. The term f, represents external forces applied to the fluid, for
example, forces due to gravity. Equation (2.8), the condition for incompressibility,
removes the sound waves.

Since we want our finite difference approximation to preserve the conservation
properties for incompressible inviscid fluids, it is important to consider which of the
physical variables, p, v, and p, should be defined as vertex-centered quantities and
which should be defined as triangle-centered quantities. We have found that
prescribing velocities as triangle-centered quantities makes the formulation of
conservation of circulation straightforward. Prescribing the densities on triangles
and pressures at vertices allows conservation of vertex cell areas.

The time integration of velocities uses a second-order implicit split-step
algorithm which is solved by iteration. The vertex positions are advanced using a
second-order midpoint rule. Specifically, the velocities are advanced a half timestep,
the grid is advanced a full timestep, and then the velocities are advanced forward
the other half timestep. The complete algorithm is as follows. First compute the
half-timestep triangle velocities using

(2.10)
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where the superscript o designates the values at the old time step. We then make an
initial guess for the new triangle velocities

pr0 = y12
and iterate

Vi =Y v, (21D

XrK = X2+ drvlk, (2.12)

VR =RAXTL (X)) (243)

vk =;/1,2.k_2o_;,(vp);r.k +2o_pt,fw (2.14)

where the second superscript indicates the iteration number. The vertex velocity v**
in Eq. (2.11) is obtained from a weighted average of the triangle velocities v/** for
those triangles having / as a vertex,

w v
v7=2—"” — (2.15)
Z;m“'/

We use w,=0,p,4,, where 0, is the angle (in radians) of triangle j at vertex i
divided by n. The transformation R in Eq. (2.13) results from the requirement of
conservation of circulation, and is discussed in Section D below.

The pressures { p7*} in Eq. (2.14) are derived from the condition that the new
velocities {v**} should be divergence-free at the new timestep, satisfying Eq. (2.8).
The pressure Poisson equation is derived from Eq. (2.14) by setting (V- v,)”"‘ =0to
obtain a pressure p™*, such that

5[ nk o‘z
V. —(V = (Vrk . yli2k vk f ) 2.16
< 20,( p)’> V-, )’+< 2p, “/, (216)

H

Both terms in Eq. (2.16) are straightforward to evaluate, since the divergence is
taken over triangle-centered quantities. Note also that the discrete gradient
operator V must also carry time advancement superscripts since it depends on the
current grid location. (See Eq.(2.4).) Two features of the Poisson equation,
Eq. (2.16), are noteworthy. First, it is derived from V%=V .V¢, as in the con-
tinuum case. Second, the left-hand side results in the more familiar second-order
accurate templates for the Laplacians (such as the five-point formula) derived for
homogeneous fluids and regular mesh geometries.

D. Conservation of Circulation

The approach we have outlined is basically a control volume approach which
uses an integral formulation to derive the difference algorithms. Equation (2.13),
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which produces conservation of circulation over vertex cell volumes, is a con-
sequence of this approach. It reflects numerically the fact that the triangle velocities
must be altered as the grid rotates and stretches. This process does not prevent the
addition or loss of vorticity due to external forces or changes in density at inter-
faces. Rather it corrects any numerical errors that may arise because the grid has
moved. Thus it guarantees conservation of circulation at those vertices where the
circulation theorem applies.

The transformation R is derived by considering the circulation about each vertex.
Since triangle velocities are constant over the triangle, the circulation taken about
the boundary of the vertex cell can be calculated from Eq. (2.5). The conservation
of vorticity then takes the form of the operator R which preserves the value of the
circulation about each vertex as the grid changes.

Conservation of circulation requires that at each timestep, and for each vertex, «c,

V(e - = Z Vi (e =) (2.17)
e i)

For convenience in notation, we now drop the superscript 1 for the velocities and
the iteration superscript k appearing in Eq. (2.17). Since there are two components
of velocity on each triangle, but only one constraint at each vertex, the form of the
rotator is undetermined. Fritts and Boris [1] provided the additional constraints
by making each term in the circulation integral assoctated with a given triangle a
conserved quantity, and hence the sum in Eq. (2.17) remains unchanged. This
means that for each triangle j,

Vo(r =) =v, (1 — ), i=1,2,3. (2.18)

Although this approach conserves circulation, the following example shows that it
is much too restrictive.

Consider an inviscid shear flow on the grid shown in Fig. 2a. Triangles above
y=0 have a velocity v, = — 1, and those below have a velocity v.= + 1. If after one
step the vertices have moved as in Fig. 2b, conservation of circulation through
Eq. (2.18) imparts a y-component to the velocities for those triangles bordering the
shear. Although the circulation integral about each vertex in the grid is conserved,
the flow is now no longer independent of ).

To obtain a better formulation of the transformation R we must consider
Eq. (2.17) more carefully. Since Eq. (2.17) is linear in the unknowns {v,}, we can
obtain the change in triangle velocities by considering the change produced by the
movement of a single vertex ¢, with coordinates r., and sum the resultant
expression over all vertices. It is reasonable to assume that the rotator should
change only the velocities of the triangles which have ¢ as a vertex. As a result,
conservation of circulation gives

vl+l2.(r:l_rl+l)+vlrl'3'(rr-—l—r?)

=vl+l2'(r:)_r1+l)+vl—1,'2'(r1—l_rg) (219)

[4
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FiG. 2. A test problem for conservation of circulation: (a) the initial flow pattern; (b) the velocities
after a half-time step, (c) the velocities after the old rotator operator is applied.

for each vertex i about ¢. We have used r,=r"=r? for those vertices which are
stationary. If only vertex ¢ moves, the cell area at vertex ¢ is constant, so that
vorticity is conserved about vertex ¢ as well. However, at all neighboring vertices,
circulation, not vorticity, is conserved. By introducing the notation

OV, 125V, 12— Vit12
and
or, =r"—r?

4 14 [

Eq. (2.19) may be rewritten as
OV, 1o (K =1, )+ 0V, (=) =(V,_ 2=V, 12) - OF. (2.20)

Let us also decompose dv,, . into a component, f,,,,, parallel to the side
opposite vertex ¢, and a component, »,, ,,,, normal to the side opposite vertex ¢ by
writing
:'><(r,+1—r,) ' T,

+ 1.2 '
|rl . |

(2.21)

OV, p 121,01,
' ’ |r1+l_r1|

With this notation and using the equation for the area, 4, ,, of triangle i+ 1/2.

2A,+,,2=f-[(r,H—r,)x(r:f—rH_])], (222)
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Eq. (2.20) becomes

2Al+1,2 (r1+1_r1)'(r7—r1+1)
", 2t 1412
|rl+l_rl| |rl+l_rl|
—24,_ ., (r,—r,_)-(r,_,—17)
=12 Ly
|rl_r1—l| Irl_rl—ll
=(V_12=V,4y2) 01, (2.23)

Let N, denote the number of triangles (vertices) about an interior vertex c¢. The N,
equations given by Eq.(2.23) for the 2N, unknowns {t,,,,} and {n,,,.} are
linearly dependent. This can be seen by summing the equations, which produces the
equation for the change in circulation about vertex ¢. The equation for the change
in circulation at vertex c¢ is a linear combination of the 7, ,’s, which is equal to
zero. Since we want the 7, ;,’s to be linearly independent, we can set ¢, ,,=0 for
all i. We still need another equation to determine the normal component for the
change in velocities on the triangles.
Let us for the moment write that equation as

N,
Z Civ120,412=0. (2.24)

=1

Using Eq. (2.23) with ¢,, ., =0 for all i, we can successively eliminate each n,, .,
fori=1,..,N.— 1 in Eq. (2.24) until we arrive at an equation for ny_, ,,. Since the
numbering of the triangles and vertices is arbitrary, this expression is valid for each
triangle i+ 1/2 by replacing ny, , ,, with n,, , , and vy ., with v, ,,,. The result is
that

5x(r1+l_r1)

OV, 2= 24

1+12

PP R Cov12 [Tag 1 — Tl

, y ,

XI:b"Z 74 (Vi 12— Vi 12)-OF, Z 24 .
k() k+1:2 k(c) k+1:2

(2.25)

Several alternatives are possible for Eq. (2.24). If we conserve divergence about the
vertex ¢, then

Cowr=1t,, 11,

b=0.

(2.26)

The transformation R prescribed by Eq. (2.25) is time-reversible, hence
Egs. (2.10)-(2.14) are also reversible. The entire algorithm advances vertex
positions and velocities reversibly while evolving the correct circulation about every
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interior vertex. This technique is unique for Lagrangian codes, which usually either
ignore conservation of circulation completely or conserve circulation through an
iteration performed simultaneously with the pressure iteration. With this method
the circulation is conserved exactly regardless of whether the pressures have iterated
to their final values.

E. Viscous Flows
Viscosity modifies Eq. (2.9), so that now

dv
P — +Vp=1f,+uVi. (2.27)

Discretization of the additional term in the momentum equation follows the same
approach as the discretization of the other terms. Since the velocity is a triangle-
centered quantity, we need a discrete vertex-centered gradient operator, and a
discrete triangle-centered divergence operator. Employing the same techniques as
above we have

A((Vf)(=%z cr1a(f =) X2, (2.28)
e

and

I\Ji —

Z (ri—r )12 (2.29)

The Laplacian is found by taking the divergence of the gradient.
The finite difference equations, Eqs. (2.10) and (2.14), can be modified to account
for the additional term in the momentum equation by

vjl 2 vjo . (V )o _+_ f + 2p (VZV (230)
ot ot u, ot
nk _ gli2k n.k f Vn.k A Vn.k nk -1 . 2.31
A= (Vg vl @3

These equations are implicit in the velocities, just as the original Eqgs. (2.10)-(2.14)
are. As in the inviscid case, we solve by iteration.

This algorithm was tested by calculating the spreading of a shear layer of initially
zero thickness given by

(U‘,, 0)9 for y > }’0’
v(x, y,t=0)= { (0,0), for y=yq, (2.32)
(—-v,,0), for y<yo,
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where y, is the original location of the vortex sheet. The velocity distribution across
this layer evolves as

vix, v, 1)= % v, erf [%] (2.33)

where v=pu/p. The width 4y of the layer grows as
Ady=8(v)"2 (2.34)

For the test calculation the grid was initialized to center a vortex sheet in a grid
16 cells wide with an initial layer width of zero. The two opposing streams had
initially constant velocity profiles. The evolution of the interface between the
streams was governed by the same algorithms as the interior of either fluid, so that
no special interface boundary condition was used. The boundary conditions on the
sides of the computational region were periodic, and the top and bottom had free-
slip boundary conditions.

At the end of the calculation, the layer width agreed to within numerical round-
off with the theory and the layer extended over the whole mesh. The velocity profile
for each stream coincided with that given by Eq. (2.33) to within round-off error.
The y-components of the velocity remained zero, indicating that the algorithm was
working well for the grid distortions presented by the problem.

F. Conservation of Vertex Cell Areas

Equations (2.10)(2.14) are implicit in the triangle velocities {v,}. Because these
equations must be solved iteratively to produce a divergence free velocity field, a
small residual error may remain. In addition, vertex velocities are derived from the
divergence-free triangle velocities. In practice this means that vertex cell areas may
not be conserved. Furthermore, as the flow progresses, the triangle sides distort. Yet
at any given time we compute using straight triangle sides, which does not produce
the equivalent cell area about any given vertex. However, since we know what the
triangle area should be, it is possible to at least make a correction to the known
error. Our approach, then, is to perform an ad hoc correction step after all the ver-
tices have been advanced in time. This correction step moves the vertices in order
to conserve vertex cell area. After this vertex correction step, the rotator is applied
to ensure that the circulation has not been changed.

To expand or contract a vertex cell. area, we must expand or contract the
surrounding triangles areas. Suppose we wish to expand a triangle j with area 4,
and vertex coordinates r, by an amount 64,. To do this we will move each vertex r,
an amount 7

Y —r,=6r,=d[ix(r,_,+r,, )] (2.35)

]

that is, the vertices of the triangle are moved normally to the opposite side by a

58176 2-9
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distance prescribed by the triangle expansion factor, d,. If d, is positive, the triangle
area increases. Using the vector definition for the area of a triangle, we have

204,=24" - 24,
= [ = r ) (e0% = 15 ]
=[(r,,,—r)x{or,_,—0r,,. )]
+[(or,,,—or)x(r,_,—r,, )] Z
+[(or,,, —or,)x(dr,_,—or,,)]-2
=s"d,+64,d?, (2.36)

Y

_[(rl+l_r1)x(rl_rl—l)]'f

b

where s? is the sum of the squares of the sides of the triangle. This quadratic in the
expansion factor, d,, can be solved to yield

g —s7+./s* +484, 64, (237)
a 124 ’ :

J

The sign in front of the square root was chosen to ensure d, has the same sign as
0A,.

We relate the change in triangle area, 64,, to the conservation of vertex cell areas
through

. A - A —A4, A/3
OA,—?(Z ) =) Y 34,, (2.38)
iy Wy !
where the sum is over the three vertices of the triangle, 4, is the current area about
vertex i and A¢ is the original area about vertex /. Basically, the change in vertex
cell areas is apportioned to each contributing triangle according to that triangle’s
contribution to the vertex cell area.

Although this residual correction is a small numerical effect, we have found that
it improves the overall results of a calculation. Because this algorithm expands
triangles, it has potential for modelling other physical processes. In a compressible
algorithm involving energy release and fluid flows with transit times which are
small compared to the energy release times, this algorithm could be used to
produce the required expansion of the vertex cells.

G. Grid Restructuring

In Lagrangian calculations the grid may distort to the point where grid restruc-
turing is necessary. The derivations of the reconnection and vertex addition and
deletion algorithms are done through the control volume approach and the use of
triangle velocities. For all the algorithms used, the area-weighted divergence and
curl taken about each vertex are both identically conserved for grid reconnections
and vertex addition.
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The accuracy of a general triangular mesh is diminished by large obtuse angles
within triangles. With reconnections, accuracy can be recovered by ensuring that
large obtuse angles are preferentially eliminated. There are many ways of
formulating a reconnection algorithm. The one we have chosen is based on
requirements for solving the pressure Poisson equation. The pressure Poisson
equation is formally equivalent to that obtained by a piece-wise linear Rayleigh—
Ritz—Galerkin finite element procedure on a triangular grid. (See, for example,
[15].) Since we solve the equation by iteration, we want the iteration to converge
as rapidly as possible. Mathematically, convergence is assured if the finite difference
equation has a maximum principle; that is, all the off-diagonal terms are negative,
the diagonal term is positive and greater than or equal to the absolute value of the
sum of the off-diagonal terms, with strict inequality for at least one equation. (That
one equation typically involves boundary conditions. Our boundary condition
prescribes the integrated pressure along the upper boundary.)

To see how large angles affect the maximum principle, consider the difference
equation for vertex / of Fig. 3a. The off-diagonal coefficient relating vertex / to
vertex j is

a= —Lcotf +coth™), (2.39)

where 8 and 6~ are the angles opposite the line from the vertex j to the vertex / as
shown in Fig. 3a. The other off-diagonal terms are determined in a similar manner
from the remaining edges emanating from vertex /. The diagonal coefficient is the
negative of the sum of the off-diagonal terms. For positive area triangles, 6 * and
0~ are both between 0° and 180°. Hence, each term in Eq. (2.39) is negative only
when 6% + 6~ > 180°, since

sin(f* +67)
I Ym0 sl (240)
The reconnection algorithm ensures that the angles subtended by any given edge
sum to no more than 180°. If 0% + 0~ is greater than 180°, the grid line is recon-
nected as shown in Fig. 3b. The new angles, 8 * and ', must sum to less than
180° since (0" +60~ +60'* +6' ) is the sum of the interior quadrilateral angles,

0)
| J k ! k

Fic 3. (a) Definition of the angles 6+ and 6~ for the diagonal line drawn from j to /. (b) The angles
0'* and @'~ formed by connecting the other quadriliateral diagonal.
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which must be 360°. By chosing the diagonal which divides the largest opposing
angles, the reconnection algorithm preferentially eliminates large angles in triangles.

Interface sides are never allowed to reconnect. In such cases vertex addition
algorithms are needed. Vertex addition algorithms are also needed where the flow
naturally depletes vertices. For vertex addition, satisfaction of conservation
integrals is particularly simple. The vertex added at the centroid of a triangle sub-
divides that triangle into three smaller triangles. A vertex added to the midpoint of
a side subdivides the two adjacent triangles into four smaller triangles. If the new
triangle velocities are all the same as the velocity of the subdivided triangles, all
conservation laws are satisfied. Since the reconnection algorithm is also conser-
vative, subsequent reconnections to other vertices ensure that the only effect of the
addition is an increase in resolution.

The case is not as obvious for vertex deletion. Reconnections can be used to
surround any interior vertex whithin a triangle. The vertex is then removed and the
new larger triangle given a velocity which is the area-weighted sum of the old
velocities,

AV, =AY, +ANV,+Av,. (2.41)

Such a substitution redistributes circulation in accordance with area coordinates.
Figure 4 illustrates the triangles before and after vertex removal. If {, is the vorticity
about vertex 4 before it is removed, then the vorticity about each of the other three
vertices is increased by an amount {; given by

¢ 11 = A,;4/ A,

$=A,{4/A, (2.42)

Ci=A,4/A,,
where

Gr+i+cs="{04

since
A,+A/+Ak=A/.

Therefore, total vorticity is conserved and redistributed in a reasonable and natural
manner.

Bl o
2 2

FiG. 4. (a) Vertex 4 1solated within a larger triangle before its removal. (b) The larger triangle
remaining after deletion of vertex 4 and three associated sides and triangles.
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ITI. SURFACE TENSION

A. The Algorithm

The surface tension at an interface between two materials depends on the
curvature of the interface. In the conventional numerical representation of surface
tension, it is cast into a finite-difference form by fitting vertices on the material
interface to some parametric function. This function is then used to find an estimate
of local curvature. Once the curvature is known, a surface tension force is evaluated
and used to accelerate interface vertices.

This scheme fails in SPLISH for two reasons. First, the interface vertices are
accelerated directly by surface tension forces evaluated on the vertices. Since
velocities are centered on triangles in SPLISH, the velocity field sees the effect of
the acceleration a half timestep later, unless a secondary calculation is made. As a
result, the pressure calculated within the droplet is inconsistent with that found
from the surface tension formula. Second, since the pressure gradient forces and
surface tension forces are not calculated in the same manner, numerical errors result
which grow with each timestep.

Both of these problems are eliminated by a different formulation of surface
tension, in which a surface tension potential is used to generate the forces. The
surface tension force is formulated as a gradient of a potential present only at the
surfaces. With this method, the pressure gradient forces are calculated in the same
manner and on the same grid as the forces derived from the surface tension
potential. Therefore both the surface tension potential and the pressure are
dynamically similar, and the physical pressure drop across the interface must
exactly cancel the surface tension forces. Preliminary aspects of this work were
described by Fritts er al. [16, 17].

The finite-difference algorithms for surface tension are straightforward. The
surface tension forces are included through Laplace’s formula for the pressure jump
across an interface [ 18],

p,— P.=0/R, (3.1)

where p, is the pressure just inside the droplet at the interface, p, is the pressure
just outside the droplet at the interface, o is the surface tension coefficient
associated with the two media which define the interface, and R is the radius of cur-
vature in the two-dimensional plane. The radius of curvature is positive at points
on the interface where the droplet surface is convex (a circle is convex everywhere)
and negative when the surface is concave. These pressure jumps are included in the
Poisson equation for the pressure. The average pressure, (p, + p,)/2, is computed at
the interface vertices. From the average pressure and the pressure jump, we can
compute a pressure gradient centered on triangles, both inside and outside the
surface. This pressure gradient is used in the momentum equation.
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The radius of curvature is computed from a parametric cubic spline interpolant
to the interface vertices. Past calculations of droplets oscillating due to surface
tension forces [19, 20] also use cubic spline interpolation. However, they divided
the surface into at least four segments (the top, bottom, right, and left sides of the
droplet) to produce an interpolant on each segment. Each interpolant was matched
at the joints to produce an overall curve. The parametric interpolant used here does
not require this special matching.

The parametric spline is produced in the following manner. Denote the interface
vertices by r,=(x,, y,), i=1,.., N, with ry=r,. Also define a pseudo arc length
parameter, s, such that the spline knots occur at the points

s|=07
(32)
slzslfl+|rt_rtfl|, I=2,,N

We generate the twice differentiable periodic spline interpolants, r(s) = (x(s), y(s))
from the data {s,}, and {r,}, i=1,.., N, as prescribed by DeBoor [21]. The
curvature is then given by

|r// X r/|

K=R '= ,
Ir';?

(3.3)

where the prime indicates differentiation with respect to the parameter s. The sign
of R at an interface vertex, r,, is given by the sign of 7. [(r,,.,—r,)x(r,_,—r,)].

We can iterate the process if necessary. From the spline fit we can generate new
values for the {s,} by integrating the expression for arc length along a
parametrically prescribed curve. For symmetrically placed vertices on a symmetric
droplet, however, we have found that the iteration on arc length parameter is
unnecessary.

The parametric spline fit is also used for regridding. When the regridding
algorithm calls for the bisection of a triangle side which borders the two media, a
new vertex is added on the spline interpolant between the vertices. This is done
rather than bisecting the straightline segment, since a straightline bisection
introduces spurious interface oscillations. Bisecting the spline maintains a better
overall shape for the interface.

B. Test Results

We tested the algorithm for surface tension in SPLISH using two test problems.
The first test problem consists of internal capillary waves. In the second test
problem we calculated the oscillation of a droplet due to surface tension. For com-
pleteness we also present calculations of internal gravity waves as a test of the
overall hydrodynamic algortithms in SPLISH.
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1. Internal Gravity and Capillary Waves

The linear theory for the small amplitude oscillation of an interface between two
fluids, bounded above and below by solid walls, gives the frequency w as a function
of wavenumber k,

,_ (p—p')gk+ak’

~ pcoth kh+ p’ coth kh'”’

Here the upper fluid is of depth 4’ and density p’, the lower fluid is of depth 4 and
density p, g is the acceleration due to gravity and ¢ is the coefficient of surface ten-
sion for the two media. Following the free-surface wave calculations of Fritts and
Boris [1], we take k=2n/4, A=25cm, h=h"=10cm, p=2g/cc, and p’' = lg/cc.
For an internal gravity wave, we have g =980 cm?/s and ¢ =0 dynes/cm. For an
internal capillary wave, we have g =0cm?/s and ¢ = 30 dynes/cm. These values give
a period t = 2n/w =0.22073 s for the internal gravity wave and t =0.50196 s for the
internal capillary wave. The amplitude of the oscillation is taken as 4 =0.0672h.
For this amplitude the free-surface oscillations of Fritts and Boris [1] showed
negligible non-linear effects. Figure 5 shows the initial grid for the mesh size
0s=10.125 cm.

Figure 6 shows the wave period as a function of mesh size for the internal gravity
wave problem. The ratio of timesteps for any two calculations was the same as that
for the mesh sizes. Each data point on the curve is an average over several periods
and is accurate to three digits. If we extrapolate to zero mesh size using a parabolic
least-squares fit, t=1,+ bds +a(ds)’ to the data points, we obtain 1,=10.2214,
b=0.0726, and a=0.1549 for this problem. The extrapolated value, 1, is accurate
to 0.3 %. The finite-difference derivatives given in Section II are accurate to second
order in the mesh size for triangular grids in which the centroid of a vertex cell is
the vertex itself. The truncation error is linear in the distance between th vertex and
the centroid of the vertex cell. This truncation error can occur in this problem for
vertex cells near the interface in our discretization and hence the linear term in ds
in the above quadratic expression. This linear term has a coefficient on the order
of the wave amplitude which is the approximate distortion of the grid. The order
of convergence for the algorithm is essentially quadratic with a small linear
contribution.

Figure 7 shows the wave period as a function of mesh size for the internal
capillary wave problem. Here the least-squares fit to the data gives 7, =0.4995,
b=02198, and a=0.0640. The extrapolated period is accurate to 0.5%. With
surface tension included, the convergence is primarily linear in the mesh size. The
reduction in rate of convergence is due to the use of cubic splines to calculate the
curvatures. The cubic spline curve itself is fourth-order accurate, and theorems exist
showing the second-order accuracy of its second derivatives. However, we know of
no theorem giving the accuracy of the combination of derivatives needed to
produce the curvature in Eq. (3.3).
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FIG 7. The period t as a function of mesh size for the internal capillary wave test problem.

2. Droplet Oscillation

As a further test of the algorithm for surface tension in SPLISH, we calculated
the oscillation of a droplet due to surface tension. Rayleigh [22] derived a linear
theory for small amplitude oscillations on cylindrical jets that applies to the cylin-
drical droplets we are discussing. He concluded that when the perturbation is
totally in the plane perpendicular to the axis of the cylinder, the frequency, w, for
the oscillation is given by

w,21=(n3—n)i (3.4)
p

a®’

where the surface of the droplet is given in polar coordinates by
r=a+ & cos(nd), 3.5)

where p is the density of the jet, a is the unperturbed radius of the jet, and »
prescribes the mode of oscillation in the plane with amplitude ¢ For large
amplitude oscillations, Rayleigh found that the experimental frequency diverged
from that predicated by the linear theory, and he attributed these difference to non-
linear effects.

We have extended Rayleigh’s theory to include the presence of an external fluid.
Equation (3.4) then becomes

w?=(n’—n)

—_, 36
(patp.)a’ (36)

where p, is the droplet density and p, is the density of the external fluid.
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The tests of the surface tension algorithm consisted of a series of calculations of
oscillations initiated in the lowest oscillating mode, n=2 in Eq. (3.6). Also, we have
chosen

a=0.0125cm
o = 30 dynes/cm,

values which are typical for many practical droplet problems. We discuss results for
two different sets of conditions. First we consider a droplet density of 2 g/cc in a
background external fluid density of 1 g/cc. If we use the definition of the period as
2n/w, Eq. (3.6) gives a period

1=113x10"%.

The second set of conditions are for a kerosene droplet, with density 0.82 g/cc, in a
background of air, with density 0.0013 g/cc. This second case, with the 650:1
density ratio, is a stringent test of the numerical approximations.

Figure 8 is a composite of frames from a calculation in which ¢=0.2a=
0.0025 cm for the 2:1 density ratio case. In this calculation there are 17 vertices in
each direction along the exterior boundaries, 12 vertices on the droplet interface,
and a total of 313 vertices initially in the calculation. The computational domain is
0.1 cm on a side. The left and right boundaries are periodic while the top and
bottom boundaries are solid walls. The timestep is 62 =2.5x10"°s. The figures

EEE% Eﬁ::f fﬁd a half necillatinng of the dronlet_ We can cee that ac the calculation

This was the case because the initial gridding was adequate to represent the droplet
shape. From these calculations, the period of oscillation is

7,,=135x10"3s,

Similar calculations with 20 vertices surrounding the droplet (a 21 x 21 grid) show
a period of

Ty =1.33x10"3s,

for 24 vertices surrounding the droplet (a 25 x 25 grid) we have a period of
Toy=131x 10" s,

and for 28 vertices surrounding the droplet (a 33 x 33 grid) the period is

Tog=1.27x 10 3s.
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FiG. 8. A compostte of frames from a calculation of an n =2 normal mode droplet oscillation with
12 vertices around the droplet: p, =1 g/cc, p,=2 g/cc, 6 =30dynes;cm, a=0.0125 cm. Each frame is

01x0.1cm?

In each case, the period does not change during the calculation. Figures 9 and 10
show the initial oscillation for the more resolved cases. For these calculations, it
was necessary to decrease the timestep, as discussed below. The time step for the
calculation with 12 vertices surrounding the droplet is such that the period cannot
be resolved to better than two digits. It appears that the calculations are not
converging to the theoretical value, but to a value of 1.19 +0.06s, based on the
graph of the computed period as a function of mesh size shown in Fig. 11. The
convergence is essentially linear as it was in the internal capillary wave test

problem, but with a numerical error of about 5.5% for this calculation.
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FiG. 9. A composite of frames from a calculation of an n =2 normal mode droplet oscillation with
24 vertices around the droplet. Same conditions as 1n Fig. 7.
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Since the internal wave tests show much better convergence properties for the
algorithm, as do previous free-surface wave calculations [1, 2], than the droplet
oscillation test problem, we performed several other numerical tests on the droplet
oscillation problem to determine if the poorer convergence properties were due to
other numerical parameters.

First, we tested whether the presence of boundaries a finite distance away could
alter the calculated period by performing calculations in a larger domain of length
0.2 cm. Here there were twice as many vertices on the boundary, but still only 12
vertices surrounding the droplet which was the same size as the droplets in the tests
described above. These calculations showed no change in period, so we conclude
that the effects of periodic boundaries and reflecting walls are negligible.

It was also important to evaluate the possible effects of nonlinearity in the
solution. The theoretical value is from a linear analysis, and the calculation is a full
nonlinear calculation. It is possible that this could account for part of the dis-
crepancy. To test this, we performed calculations with smaller amplitudes, &, to see
if there was any difference in calculated period. The result was that the numerical
value of the period was the same for ¢ =0.01a = 0.000125 cm over the course of two
oscillations as it was for ¢ =0.2a. Our conclusion is that the calculations were in a
range in which the linear theory is valid.

We used two diagnostics to determine the period of the computed droplet
oscillation. One is the time history of the position of the rightmost vertex on the
droplet interface, denoted by x,. The other diagnostic is the quadratic moment,
defined by

(3 =fo dx dy, (3.7)
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TABLE I
16 x 16 Grid
Time Last period {x)

0.0000 0.3061 E—07
0 6500£—03 01426E—07
0.1300E—-02 0.0013 0.2929E